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The financial risks from wind turbine failures: a value at risk approach
Dorcas Mikindania,b, John O’Briena, Paul Leahy b,c and Peter Deeneyb,c

aCork University Business School, University College Cork, Cork, Ireland; bEnvironmental Research Institute, University College Cork, Cork, 
Ireland; cSchool of Engineering and Architecture, University College Cork, Cork, Ireland

ABSTRACT
This paper models the financial risk associated with the cost of turbine failures over the lifetime of 
a wind farm. These failures cause significant variation in realized profit on wind generation 
projects. A model of the fault generating process is presented and industry data is used to 
parameterize the model. The model is then used to measure the financial risk associated with 
the wind project. Risks are measured using the financial metrics Value at Risk (VaR) and Conditional 
VaR (CVaR) metrics. The study shows that the 95% lifetime VaR of a turbine is equivalent to 52% of 
the initial capital expenditure. However, as the number of turbines in a farm increases, this risk 
diminishes. These findings have significant implications for small-scale projects, particularly com
munity projects.

KEYWORDS 
Risk analysis; wind energy; 
turbine failures; 
diversification

JEL CLASSIFICATION 
Q42-alternative energy 
sources; C15- statistical 
simulation methods: G32- 
financing policy; financial 
risk and risk management; 
capital and ownership 
structure; value of firms; 
goodwill

I. Introduction

There is a global effort to decarbonize power gen
eration by using renewable energy in response to 
climate change (Balsalobre-Lorente et al. 2023), 
with wind energy becoming increasingly popular. 
Increased wind capacity lowers the mean and var
iance of production costs (Lynch and Curtis 2016), 
strengthening financial resilience and market sta
bility. However, wind farms face significant risks 
from turbine component failures. Initially, wind 
energy profitability relied on government subsi
dies, but as the industry moves towards full com
mercialization, understanding failure risks’ impact 
on profitability is crucial, especially for new inves
tors and community-based projects with smaller 
turbines which may not purchase a long-term 
guarantee from the manufacturer (Leaney et al.  
2001). This paper aims to highlight the financial 
impact of failure risks, offering valuable insights for 
investors, insurers, and industry practitioners by 
developing a method to estimate and quantify 
these risks using investment finance measures.

The Chartered Institute of Management 
Accounts defines operational risks as those arising 

from an entity’s structure, systems, people, pro
ducts, or processes (Collier 2005). In manufactur
ing, these risks involve physical asset damage, 
system failures, and employee safety. Financial 
losses from wind turbine failures include energy 
sales loss (opportunity cost) and replacement 
equipment costs (direct cost) (Rieger 2004). This 
study focuses on uncertainty in random failures 
that can cause significant financial losses. High- 
risk projects, like small-scale community projects, 
often struggle to secure institutional finance, hin
dering renewable energy investment growth 
(Gabriel 2016).

According to Modern Portfolio Theory, inves
tors can reduce overall portfolio risk by diversify
ing their investments across uncorrelated assets 
(Mangram 2013). In the wind energy industry, 
this means having multiple turbines in a farm to 
ensure continued power generation if one turbine 
fails. Turbines operate independently, so a failure 
in one, such as from a lightning strike, does not 
affect others. This is the same for failures of com
ponents such as generators, blades, and gearboxes. 
Financial theory uses measures like standard 
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deviation and value at risk to analyse the benefits of 
this diversification given the industry characteris
tics of market fluctuations and technical uncertain
ties (Du and Li 2019). Whilst, regulatory 
authorities are faced with the challenge of develop
ing policy measures that can mitigate these risks 
and encourage diversification of investment port
folios in renewable energy infrastructure.

Many studies on wind turbine failures are lim
ited by data quality and availability (Leahy et al.  
2019; J. Li et al. 2016). This study addresses this 
problem by using Weibull distributions fitted to 
industry turbine failure data, enhancing precision 
over studies relying solely on average failure rates. 
It extends the analysis to include financial risk and 
farm size, developing a model that captures ran
dom failure processes. This model generates failure 
profiles, measuring the financial risk of a wind 
project over its typical 20-year life (Ziegler et al.  
2018). Value at Risk (VaR) and Conditional VaR 
(CVaR) are adopted to measure risk consistently 
and effectively.

Results are normalized relative to initial CapEx 
to compare wind farm sizes. The total expected 
repair cost over a turbine’s lifetime is 22% of 
CapEx. In 5% of worst-case scenarios (95% VaR), 
this cost exceeds 52%, with CVaR at 63%. VaR and 
CVaR values decrease as the number of turbines 
increases, suggesting risk reduction through diver
sification. The study highlights the importance of 
deploying multiple turbines to mitigate financial 
risks from individual failures. Focusing on the 
onshore wind industry, a 2.5 MW turbine was ana
lysed, reflecting typical capacities (Lantz 2013; 
Serrano‐González and Lacal‐Arántegui 2016; Tazi, 
Châtelet, and Bouzidi 2017).

Figure 1 shows the number of turbines in 
European wind farms. Panel A details Ireland, 
where most farms have fewer than 15 turbines, but 
larger projects are emerging. Panel B gives an over
view of Europe. The UK leads with an average of 61 
turbines per farm, indicating significant investment. 
The Netherlands follows with 60, Germany with 50, 
and Denmark with 42 turbines per farm. These 
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Figure 1. Turbines in European wind farms. This figure presents the number of turbines in European wind farms. Panel A shows the 
distribution of turbines in the Republic of Ireland, for existing and under construction wind farms. Panel B shows the average of 
number of turbines in wind farms for different European countries commissioned in 2023. Source: Wind Europe (2023).
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figures highlight a trend towards larger wind farms 
to meet renewable energy targets.

This study offers several contributions to the 
literature and wind energy industry. First, it pro
vides a generic model for practitioners to assess risk 
profiles, applicable to any industry relying on com
plex equipment. Second, it scales standard financial 
metrics by CapEx, offering a common language for 
operators and investors to understand wind farm 
risks, aiding in better risk hedging strategies. Third, 
it highlights the relationship between risk and wind 
farm size, relevant for small-scale and community 
projects. Finally, it aids project planning by provid
ing insights into the optimal number of turbines 
for efficient operations, particularly valuable for 
small community projects and wind energy initia
tives in developing countries.

The rest of the paper is organized as follows: 
section two provides an extensive review of the 
existing literature. In section three, the data and 
method are detailed, explaining how the random 
processes and parameters are modelled and failures 
are transformed to financial risks. The results are 
presented in section four. The paper ends with dis
cussion and conclusion in section five.

II. Literature review

This section reviews the literature to first explain 
how risks affect wind energy industry focusing on 
risks from turbines’ failures. Second, the effect of 
size in wind farms is reviewed to understand the 
studied relationship between size of the farm and 
the financial losses from operational risks.

Wind energy associated risks

The Global Wind Energy Council (GWEC) shows 
that wind energy industry is growing fast as nations 
pledge to meet 2030–2050 science-based targets for 
reducing greenhouse gas emissions (Lee and Zhao  
2022). In 2021 Europe installed 19.8 GW of new 
wind power capacity which is 18% more than in 
2020 (Wind Europe 2022). However, the technolo
gical advancement has shaped the wind energy 
industry resulting in more complex operational 
risks, requiring a more sophisticated approach to 
risk modelling. The wind energy sector requires 
substantial upfront investment (Pookpunt, 

Ongsakul, and Madhu 2020), expensive equipment, 
and long production cycles spanning up to 25 years 
(Zaoui et al. 2022). Operational and maintenance 
costs are uncertain, amidst political pressures for 
energy security and carbon emission reduction 
(Rashid Khan et al. 2021). These factors introduce 
risks challenging both investors and operators.

Previous studies have researched wind energy 
project risks. Sonnberger and Ruddat (2017); 
Broughel and Wüstenhagen (2022); and Lorente 
et al. (2023) showed that political risks can impact 
wind energy projects but Krane and Idel (2021) 
proved that wind energy can reduce political risks 
from other non-renewable sources. Other risks 
affecting wind energy are environmental risks as 
studied in (Kucukali 2016, Nazir et al. 2019), 
investment and financing risks (Erfani and 
Tavakolan 2023; Lei et al. 2020; Qiu et al. 2020; 
Zhou and Yang 2020), and risk from operations 
and maintenance as discussed in (C. B. Li, Li, and 
Feng 2014; Weaver 2012; Zhou and Yang 2020).

To provide a comprehensive view of the topic, 
studies analysing the cost structure of wind energy 
projects have demonstrated that, after project com
missioning, most of the costs come from operation 
and maintenance (O&M) (Lau 2020; Wagner 2018). 
These costs which pose financial risks to projects 
account for 20%–25% of the total levelized cost of 
electricity (LCOE) of the current wind power sys
tems (Costa et al. 2021). Unscheduled repairs due to 
random or unexpected failures is the biggest drivers 
of these costs (Kim et al. 2011). For a comprehensive 
review of operation issues in wind farms see Costa 
et al. (2021) and Ren et al. (2021).

Froger et al. (2018) find that wind turbine 
repairs are typically outsourced to third parties by 
investor-owned farms, leading to operational chal
lenges due to conflicting interests. Investors aim to 
minimize costs post-initial investment, while repair 
companies (often the original equipment manufac
turer) seek higher spending to uphold product 
reputation. They propose condition-based mainte
nance strategies for turbine failures. However, Tazi 
et al. (2016) argue that addressing reliability issues 
starts with meticulous project design, considering 
environmental constraints, manufacturing defects, 
costs, and the system’s global warming potential.

Nielsen and Sørensen (2011) examined offshore 
wind turbine operations, finding that turbine 
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failures significantly impact energy costs, necessi
tating risk mitigation planning. However, their 
analysis treated turbines as single components, 
overlooking their complex sub-assembly structure. 
Likewise, J. Li et al. (2016) assessed operational 
risks focusing solely on converters and condition 
monitoring, using wind turbine outage probability 
as a risk measure. Our study addresses this gap by 
analysing multiple turbine components, emphasiz
ing those most prone to failures.

Bezrukovs and Sauhats (2017) evaluated eco
nomic and operational risks in wind projects, con
sidering environmental (wind speed), economic 
(electricity market prices), and technical factors. 
Their study projected revenue and efficiency using 
stochastic models and Monte Carlo simulations. 
However, the study was limited to Latvia and only 
generators were considered. We fill this research gap 
by using a generic turbine structure and capacity and 
incorporate both financial and technical factors to 
assess risks posed by turbine failures.

Turbine failures in different wind farm sizes

The size of the farm is a crucial factor to considered 
when studying turbine failure risks in wind energy 
industry. Research has demonstrated the presence of 
economies of scale in various industries including 
power generation (Bejan, Almerbati, and Lorente  
2017; Christensen and Greene 1976; Hisnanick and 
Kymn 1999; Triebs et al. 2016). As firms expand 
their scale of operations, they can often achieve 
lower average costs per unit of output, benefiting 
from factors such as bulk purchasing, specialization, 
and efficient use of resources. However, alongside 
these cost advantages, there can also be increased 
risks associated with larger-scale operations. These 
risks arise due to the complexity and interdependen
cies that come with larger operations, including 
supply chain disruptions, technological failures, 
and regulatory challenges. To balance the risk versus 
farm size paradigm, Altuntas, Berry-Stölzle, and 
Cummins (2021) argued that economies of scale 
benefits are best obtained with proper risk manage
ment practices.

Failure-related risks are presented in (Lin et al.  
2016), where the increase in capacity and turbine 
size is linked to increase in failures in turbine com
ponents. The findings showed that most wind 

turbine failures are due to failures of generators, 
gearboxes, or blades. The insurance market statistics 
listed that 85% of the failure claims come from these 
three components (Campbell 2015). Giglio, Friar, 
and Crittenden (2018) show that management of 
assets including proper maintenance of infrastruc
ture is essential for long-term economic viability of 
assets. Poorly maintained infrastructure causes risks 
of delays and damage in short run, while in the long 
run there is an increase in cost of disposal and 
reconstruction.

Nowakoski and Loomis (2023) analyse how pro
ject size influences the success of the wind energy 
industry, illustrating through case studies how scal
ability impacts product design and technology. The 
cost of electricity production was reduced more than 
six-fold over time. They highlight the industry’s 
recognition of economies of scale, leading to the 
commercialization of larger wind turbines and 
a substantial reduction in electricity production 
costs over time. Yeter, Garbatov, and Soares (2020) 
propose a risk-based maintenance strategy for off
shore wind turbines, determining the optimal num
ber of turbines for minimizing the levelized cost of 
energy. Their assessment accounts for various farm 
sizes, showing a significant decrease in electricity 
cost as the number of turbines increases, but costs 
begin to rise once the total exceeds 60 turbines.

Dismukes and Upton (2015) presented a model 
to test for economies of scale and learning effects. 
Both country-specific and industry-wide learning 
effects were analysed using a European offshore 
wind project. Their findings showed that the costs 
did not exhibit economies of scale and there was no 
robust evidence of a learning effect. However, 
although the sample was rich, it was heterogeneous 
in nature. Hence, they used the overnight cost (the 
cost of each project estimated separately) to aid 
comparison. Ederer (2015) evaluated the capital 
and operating cost-efficiency of offshore wind pro
jects. Cost was related to the issues of distance to 
the shore and water depth.

In contrast to other wind energy risk studies, this 
study analyzes risks from wind turbine failures by 
using two risk metrics, VaR and CVaR. 
A combination of reliability analysis and financial 
analysis is presented by using Weibull distributions, 
Monte-Carlo simulations, and cost analysis. The 
paper investigates how the number of turbines in 
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wind farms impacts the financial risk associated with 
turbine failures. The study approach involves asses
sing the risk profile of individual turbines and sub
sequently extending these findings to wind farms.

III. Data and method

Data

The analysis uses annual turbine failure rates data, 
cost of repair, and electricity market prices. 
Turbine failures are split into the three categories 
that dominate faults; generator, gearbox, and 
blades (Campbell 2015). This allows a specific fail
ure process to be modelled for each category. The 
study first examines an individual wind turbine, 
followed by aggregation of turbines to understand 
the effect of size in wind farms. The failure rates of 
generators and direct repair cost of the turbine 
components are obtained from Lantz (2013). Tazi, 
Châtelet, and Bouzidi (2017) provide the failure 
rates of wind turbine gearboxes and blades, Table 1.

Electricity price data is taken from the Sustainable 
Energy Authority of Ireland (SEAI 2023). The ana
lysis uses the European (EU 27) long term average 
price €125.11 per MWh, taken over the period 2007 
to 2023 (Figure 2). This price is used as a proxy to 
prices paid to wind farmers. The price is adjusted for 
inflation using the European average inflation rate of 
2.05% (Eurostat 2023; Trading Economics 2023; 
Webster 2023).

Discount rates

This study uses a discount rate of 7% a typical 
representative value for discount rates in onshore 

wind projects, based on data collected for a wide 
range of EU countries. However, discount rates are 
specific to individual projects, as they can vary 
across countries (Steffen 2020; Roth et al. 2021) 
and within countries, due to idiosyncratic differ
ences across projects or industry factors (Saługa 
et al. 2021), including variables such as the invest
ing company’s age and size (Garcia et al. 2016).

Steffen (2020) surveyed the literature for the cost 
of capital across a range of countries and renewable 
technologies over the period 2009–2017. He pro
vided estimates for 23 EU countries for onshore 
wind. The results show significant differences 
across countries from 3.0% in Germany to 11.7% 
in Greece, with a mean value of 7.8%. However, 
most of the estimates are dated to 2014 and there is 
some evidence of a downward trend over time.

Roth et al. (2021) present a more recent survey of 
renewable energy projects across Europe. The paper 

Table 1. Turbine component failures: 10 years since 
commissioning.

Generators Gearboxes Blades

Panel A: Failure Rates
1 0.008 0.005 0.035
2 0.009 0.027 0.015
3 0.027 0.036 0.021
4 0.033 0.078 0.028
5 0.028 0.100 0.034
6 0.063 0.058 0.026
7 0.078 0.040 0.013
8 0.036 0.074 0.010
9 0.040 0.050 0.016
10 0.024 0.036 0.004

Generators Gearboxes Blades

Panel B: Downtime (hrs)
126 261 147

This table presents the observed failure rates for the three key turbine 
components, generators, gearboxes, and blades while in commercial use. 
Panel A presents the annual failure rate and Panel B presents average 
downtime per failure in hours. Data are taken from Lantz (2013) and Tazi, 
Châtelet, and Bouzidi (2017).
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presents the average cost of capital for onshore wind 
projects in 19 countries, along with the maximum 
and minimum reported for each country, see 
Figure 3, gathered from November 2019 to 
April 2020. The average cost of capital is 5.5%, but 
again there is considerable variation between coun
tries which ranges from 1.9% to 9.1%.

The representative rate of 7% selected for our 
analyses lies between the mean values of Roth et al. 
(2021) and Steffen (2020). It is also consistent with 
the generic 6.5% to 9% range noted by the 
International Energy Agency (IEA 2020) for 
renewable energy and their central estimate for 
commercial power generation of 7% (IEA 2020). 
The results of both Steffen (2020) and Roth et al. 
(2021) highlight the difficulty in defining 
a standard base rate. Both show significant cross- 
sectional variation across countries, while Roth 
et al. (2021) also identifies differences within coun
tries with 63% of the countries have a range above 
2% between maximum and minimum cost of capi
tal, with a maximum range of 6%. Stress testing 
demonstrates that results are robust for any reason
able discount rate.

Method

Turbine failure processes are modelled using 
Weibull processes, with unique parameters esti
mated for generators, gearboxes, and blades. An 
optimization process tailors the distributions 
using industry data. Monte Carlo simulation esti
mates fault distribution over a turbine’s lifetime, 
converting simulated failures into financial costs 
and risk distributions. VaR and CVaR metrics 

describe the outcomes, where failure is defined as 
damage requiring a complete component replace
ment and halting power generation.

Optimisation process
The use of a Weibull distribution is a standard sta
tistical method used in modelling engineering fail
ures (Hribar and Duka 2010) and has been used to 
model failures in power systems (dos Santos and de 
Barros 2015), electrical components and space craft 
(Imken et al. 2018). The Weibull distribution is 
defined by two parameters, k and λ, referred to as 
shape and scale, respectively. The value of k defines 
the dominant failure mode, with k< 1 indicating 
early failures and k> 1 indicating increasing failures 
from age. Random failures are indicated by k ¼ 1, 
see Figure 4.

The probability density function (pdf) of the 
Weibull distribution is- 

where t is the time to failure, k is the shape para
meter, determining the shape of the distribution 
and λ is the scale parameter, representing the char
acteristic life. The distribution is only defined for 
t > 0 and k and λ are positive, t and λ have the same 
units, in our case years, while k is a scalar. The 
cumulative distribution function (cdf) is- 

An optimization process is used to find the combi
nation shape and scale parameters that provide the 
closest fit between the expected failure rates 
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Figure 3. EU cost of capital for onshore wind projects. This figure shows the cost of capital for Onshore Wind Projects across 19 
European Union countries between September 2019 and April 2020 sourced from (Roth et al. 2021). The red bars mark the minimum 
and maximum values for countries.
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generated by the Weibull distribution and the fail
ure rates observed in commercial wind farms. The 
best fit is defined as the lowest sum of square errors 
(the difference between the estimated and observed 
failure rates) across the range of observed data. The 
expected failure rate in a year, bRt, for a given pair of 
parameters k and λ is- 

The optimization process finds the values of k and 
λ that minimize the objective function J k; λð Þ.- 

Rt is observed failure rate in year t and T is the 
sample size.

Cost of faults
The cost of a single failure is the sum of direct cost 
(the cost of repair) and opportunity cost, (the lost 
energy sales due to downtime). All cost are dis
counted to the commissioning date of the turbine, 
that is t ¼ 0.- 

Cn is discounted cost of fault n, tn is the time of the 
fault, d is the discount rate, DCn is the direct repair 
cost, OCn is the opportunity cost. The simulated 
faults are summed over the life-time of a turbine to 
get the total cost of failure- 

The opportunity cost of a turbine failure is the lost 
revenue from energy sales that would have been 
made had the wind turbine remained operational. 
The opportunity cost is a function of the installed 
capacity, IC, utility factor, U, price, P, and down
time, DT.- 

Installed capacity is the wind turbine’s maxi
mum production in megawatts (MW); utility 
factor, set at 24% according to IEA (2020), is 
the average power produced divided by installed 
capacity. Downtime is the loss of energy gen
eration measured in hours from fault occur
rence to repair completion. Price is in € per 
Megawatt-hour. Fault occurring until repair is 
complete. Price is expressed in € per Megawatt- 
hour.

Financial risk is assessed using VaR and CVaR 
(Hull 2014). VaR determines the maximum poten
tial loss over a specified time and confidence level, 
commonly used by traders, fund managers, and 
financial institutions. It offers a single metric sum
marizing portfolio risk. This study adopts a 95% 
confidence level over a turbine’s 20-year lifespan. 
CVaR, also known as estimated tail loss, calculates 
the average potential loss exceeding the VaR 
threshold. While VaR measures potential loss at 
a certain probability level, CVaR estimates the 
expected loss in worst-case scenarios beyond the 
VaR level. VaR and CVaR are measured through 
a Monte Carlo simulation. The present value of the 
total cost of faults is repeatedly measured. The 
values are then ranked, the 95th percentile value is 
the VaR, and the average of all values above the 95th 

percentile is the CVaR.
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Results are presented as a percentage of the initial 
CapEx to enable comparisons across wind farms of 
varying sizes. The CapEx of wind energy generation 
encompasses turbine, foundation, electric installa
tion, grid connection, control systems, consultancy, 
land, financial costs, and roads. This approach facil
itates the assessment of cost-effectiveness and effi
ciency over a wind project’s lifespan and allows for 
comparisons between wind farms of different scales. 
Wind Europe (2022) offers data on investments in 
Europe, reporting 19.8GW installed capacity at 
€24.8 billion, resulting in an average CapEx of 
€1.25 million per megawatt installed.

IV. Results

The results are presented in three sections: the failure 
distributions that provide the basis of the Monte 
Carlo simulations, cost quantification of turbine com
ponent failures, and risk profiles of wind farms over 
their operational life. This final section presents the 
key findings of the paper, the distributions of costs 
due to random fault process, the quantification of the 
risk in terms of VaR and CVaR, and the relationship 
between windfarm size and investment risk.

Failure distributions

Weibull distribution parameters, derived from indus
try data through optimization (Section 3.3.1, Table 2), 
reveal distinctions among turbine components. 
Gearboxes and generators exhibit scales close to the 
turbine’s typical lifetime, with shape values above one, 
suggesting wear as the primary failure cause. In con
trast, blades have a shape parameter below one, indi
cating a longer lifespan, often surpassing other 
components. This corresponds with literature high
lighting recycling challenges for used blades (Liu, 
Meng, and Barlow 2022; Nagle et al. 2022).

Industry data availability is limited to the first half of 
the turbines’ operational life and statistical processes 

are used to model failure distributions over the lifetime 
of a turbine. The simulation uses Weibull distributions 
to model the failure behaviour of wind turbine compo
nents over time. Industry and simulated annual failure 
rates are presented in Figure 5.

Failure distributions of a single turbine are pre
sented in Figure 6, first showing failure probability 
in turbine components (Panel A) and then in total 
(Panel B). Gearboxes have the highest number of 
failures followed by generators and then blades. The 
probability of having one failure is 50% for generators 
and 43% for gearboxes. More failures are displayed in 
gearboxes compared to generators, with higher prob
ability of multiple failures. There is an 83% probability 
that blades will not fail over the lifetime of a turbine.

Panel B highlights the financial risk due to random 
faults in the components. While 15% of turbine have 
no faults over their lifetimes, another 15% is expected 
to have five or more faults. The costs associated with 
these faults will result in significantly different eco
nomic outcomes and emphasizes the importance of 
understanding and quantifying those risks.

Next, we group turbines into wind farms and 
analyse their fault profiles. Seven wind farms, with 
turbine counts ranging from 1 to 100, are modelled 
to estimate mean failure rates and standard devia
tions over their operational lives (Table 3). The 
average number of failures rises linearly with farm 
size, while the variability, depicted by the standard 
deviation, also increases but at a decreasing pace. 
This variability represents financial risk, quantifi
able using VaR and CVaR metrics.

Unsurprisingly, the average fault increases linearly 
with windfarm size, and with that the expected cost. 
Standard deviation also increases with windfarm size, 
but in this case, it increases more slowly, proportional 
to the square root of farm size. The standard deviation 
reflects the variability, and consequently financial risk, 
in reliability of wind farms. The increase in standard 
deviation with farm size, indicates a growth in risk in 
absolute terms but the slower growth rate indicates 
a fall in relative terms. Understanding the link 
between farm size and risk is essential in the planning 
and financing stages of a windfarm project.

Estimated failure costs

In this section, failures are converted to financial 
cost. The typical cost of failure of each of the three 

Table 2. The modelled failure parameters.
Shape-k Scale- λ (Years)

Generator 1.52 18.72
Gearbox 1.38 15.02
Blades 0.75 86.80

This table lists the pairs of parameters (shape and scale) for the Weibull 
distributions used to simulate turbine failure distributions.
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components is first examined. The costs, the aggre
gate of the direct cost (repair) and opportunity cost 
(lost energy sales), are specified and presented in 
Table 4. The repair cost dominates, with 

opportunity cost accounting for less than 3.5% of 
the total across all three components.

Repair costs are used to derive the cost of faults 
over the lifetime of a turbine, Table 5. Costs are 
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broken down by the three components and express 
in present value terms. The average lifetime cost is 
€684,672. The main source of costs is faults in the 
gearbox, accounting for 73% of the total. This is 
followed by generators (21%) and blades (6%).

Figure 7 presents the discounted cost distri
bution. The average lifetime discounted failure 
cost is indicated by the green line and the red 
line identifies the 95% percentile of the distribu
tion, that is the 95% VaR level. The distribution 
shows 14% of turbines do not have a single 

failure, highlighting the wide range of outcomes 
due to random failures.

Risk metrics

The cost profiles allow quantification of the finan
cial risk in a windfarm project due to random 
faults. The VaR and CVaR values for a single tur
bine are presented in Table 6, the results highlight 
the significant variation in realized profit due to 
random failures. The costs are scaled by the initial 
capital expenditure to allow comparison.

The expected cost from failures is equivalent to 
22% of CapEx. However, the 95% VaR from faults 
is equivalent to 52% of the CapEx. Significantly, in 
the worst 5% of cases, the average loss is equivalent 
to 63% of CapEx (the 95% CVaR), 41% above the 
expected value.

Table 3. Wind farm failure distribution.
Number of Turbines 1 5 10 20 40 60 100

Mean Failures 2.75 13.76 27.53 55.05 110.10 165.15 275.26
Standard Deviation 1.90 4.01 5.65 8.01 11.37 13.92 18.05

This table present the average number of failures, along with the standard deviation, for windfarms with sizes ranging from one to 100 turbines. The 
estimates are for failures across the windfarms’ operational life.

Table 4. Turbine repair cost.
DT (hrs) OC (€) DC (€) TC (€) OC (%) DC (%)

Blades 147 9,289 374,689 383,978 2.42 97.58
Gearboxes 261 16,513 647,101 663,614 2.49 97.51
Generators 126 7,995 232,634 240,629 3.32 96.68

This table presents the components of total cost (TC) of failure for the components of a turbine. The Opportunity Cost (OC) and 
Direct Cost (DC). The opportunity cost is calculated from the downtime (DT), Installed Capacity (2.5 MWh), Utility Factor (0.24), 
and price of electricity (€125.11 per MWh).

Table 5. Components discounted failure costs.
Component Cost (€) Total Cost (%)

Generators 146,679 21.42
Gearboxes 498,467 72.80
Blades 39,526 5.77
Total Cost 684,672 100.00

This table shows the present value of the expected cost of repairs over 
a turbine’s lifetime. The costs are presented for each component and as an 
aggregate figure.
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The final analysis is a study of the relationship 
between risk and wind farm size to understand the 
effect of diversification. The VaR and CVaR is calcu
lated for a range of farm sizes, and then normalized 
relative to CapEx. The relationship between size and 
risk is presented in Figure 8. Panel A provides across 
a range of farm sizes from 1 to 100 while Panel 
B provides more detailed information on seven spe
cific sizes. The focus is on normalized VaR and CVaR 
to allow comparison across wind farm size.

The general pattern is clear, as the number of 
turbines increases, the risk as a proportion of the 
investment declines, Figure 8, Panel A. Over the 

full range, VaR falls from 51.92% for a single tur
bine farm to 24.55% for a hundred turbine farm, 
the corresponding values for CVaR are 62.91% and 
25.26%, respectively. The lower limit is 22%, the 
expected cost of repair. This occurs in the theore
tical situation where all turbines realize the average 
cost of repairs and is a zero-risk scenario. A single 
turbine has a VaR equivalent to 30% of CapEx 
above the minimum while this value falls to just 
2.5% above the zero-risk level for 100 turbines.

The relationship between size and risk, and con
sequently the benefits of diversification, is pre
sented in more detail in Panel B. Over half the 

Table 6. Risk analysis for a single turbine.
Generator Gearbox Blades Turbine Normalised (%)

Expected Cost (€ ‘000) 147 498 40 685 21.91
95% VaR 354 1,159 283 1,624 51.98
95% CVaR 421 1,367 402 1,966 62.91

This table presents the expected cost, Value at Risk (VaR) and the Conditional Value at Risk (CVaR) of the wind turbine failures broken 
down by component. The Turbine costs is the aggregate of the three components and the normalized column shows the 
aggregate values relative to the initial capital expenditure. The cost values are in thousands of euros.

Panel A: Variation of Risk and Farm Size

Panel B: Selected Farm Sizes
Number of Turbines 1 5 10 20 40 60 100

Expected Cost 685 3,423 6,847 13,693 27,387 41,080 68,467
95% VaR 1,624 5,371 9,540 17,449 32,598 47,500 76,716
95% CVaR 1,966 5,971 10,331 18,488 34,080 49,184 78,937
Normalised VaR (%) 51.98 34.37 30.52 27.91 26.08 25.33 24.55
Normalised CVaR (%) 62.91 38.21 33.06 39.58 27.26 26.23 25.26
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Figure 8. Wind farms risk Metrics. This figure gives the expected cost (EC), Value at Risk (VaR), the Condition VaR (CVaR) for wind farms 
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available reduction in risk can be achieved by 
increasing the size of a wind farm from 1 to 5 
turbines. VaR falls from 51.98% to 34.77%. This 
represents a drop from 30% above the minimum 
level to 13%. A further increase to size to 10 tur
bines brings the VaR down to 30.52%, only 8.5% 
above the minimum level, and capturing about 
three-quarters of the available benefit from diver
sification. Beyond this level, the benefit of increas
ing farm size falls steadily.

Sensitivity analysis

The choice of discount rate is central to the analysis 
and the results presented here. Consequently, we 
perform stress tests the sensitivity of VaR estimates 
to discount rates. The results for a seven-turbine 
farm are analysed here but the results are similar 
for other farm sizes.

VaR is calculated for a range of values using the 
range of values of values for discount rate (6.5% to 
9%) presented by the International Energy Authority 
(IEA 2020). The results are presented in Table 7, 
along with the difference in value from the base case.

The change in Normalized VaR values ranges 
from 3.48% to −11.87% as a percentage of the 
central estimate as the discount rate moves from 
6.5% to 9%. The results show the expected inverse 
relationship, VaR falls as the discount rate rises. 
More significantly, increasing the discount rate 
from 7% to 9% only decreases the VaR by 11.87%. 
This allows the conclusion that the findings pre
sented are not sensitive to the selection of the 
discount rate, within a reasonable range.

V. Discussion and conclusion

Implication of the findings

This paper outlines wind farm risk profiles based 
on industry data, revealing substantial variability in 
project cost due to random turbine failures across 
different farm sizes. The average repair cost of 

a single turbine nearly amounts to a quarter of 
CapEx, while in the 5% worst-case scenario, both 
95% VaR and CVaR exceed half of CapEx. Despite 
similar average repair costs relative to CapEx across 
all farm sizes, risk decreases as farm size increases. 
Results indicate that compared to single turbine 
farms, excess risk decreases by over half for five- 
turbine farms and by three-quarters for 10 tur
bines. However, beyond this point, VaR declines 
at a notably slower rate. The findings highlight 
substantial financial risk for wind farms with 
fewer turbines. Larger commercial farms can offset 
risk through diversification with numerous tur
bines. As governments promote energy commu
nities, they need to ensure robust risk mitigation 
measures are in place for these projects.

The findings have several economic policy impli
cations for the wind energy sector.

(1) Risk management policies. The wide fluctua
tions in costs caused by wind turbine failures 
highlight the need for strong risk manage
ment policies in wind farm projects. We 
suggest policymakers create regulations or 
guidelines to address these risks, like man
dating developers to maintain repair 
reserves or promoting advanced mainte
nance methods to reduce downtime.

(2) Project Financing and Investment Decisions. 
Larger wind farms may entail comparatively 
lower risk than smaller ones, benefiting from 
economies of scale in maintenance and 
operation. Policymakers may need to ease 
financing access for larger projects to pro
mote their growth and expansion.

(3) Incentives for Scale. As wind farm size grows, 
the decreasing risk trend suggests potential 
economies of scale in managing turbine failure 
risks. Policymakers might incentivize project 
scaling to reduce sector-wide risk and enhance 
wind energy’s viability as a renewable source.

(4) Insurance and Risk Transfer Mechanisms. 
The findings highlight the potential financial 

Table 7. Discount rate sensitivity analysis.
Discount rate (%) 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0
Normalised VaR (%) 37.2 35.9 34.6 33.4 32.3 31.2 30.2 29.3 28.4
Difference from Base Case (%) 15.3 11.1 7.2 3.5 - −3.2 −6.3 −9.1 −11.9

This table presents the normalized VaR for a seven-turbine farm, using a range of discount rates. The table also shows the difference of each estimate from the 
base case (7%) used in the analyses.
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impact of wind turbine failures, especially in 
worst-case scenarios. Policymakers might 
need to facilitate access to affordable insur
ance customized for wind farm developers 
and explore risk transfer methods like cata
strophe bonds or public–private partner
ships to manage risks efficiently.

(5) Research and Development Support. 
Policymakers could allocate funding to 
research and development to enhance wind 
turbine reliability, performance, and main
tenance technologies. These innovations 
could decrease failure rates, lowering overall 
risk and boosting wind energy’s economic 
competitiveness.

Overall, these findings emphasize the need for 
proactive policy interventions to manage risks in 
wind farm development and operation, ensuring 
the sector’s growth and sustainability. The study 
also informs end-of-life decisions for wind farms, 
such as repowering, life-extension, and decommis
sioning. When repowering involves deploying 
fewer turbines after permits expire, the increased 
risk from reduced turbine numbers must be quan
tified and addressed. The developed model can be 
expanded to assess risks beyond the normal life
time, aiding in evaluating each end-of-life decision.

VI. Conclusion

This study introduces a generic approach for mod
elling faults and quantifying financial risk arising 
from mechanical failure, using familiar metrics like 
VaR and CVaR. These methods aren’t limited to 
wind energy but applicable across industries. When 
applied to wind projects using proprietary data, 
they offer investor insights into financial risks 
early on. The study also underscores the higher 
relative investment risk for small-scale projects 
responsible for their own repairs, pertinent for 
policymakers considering community or develop
ing country schemes often of smaller scale.

There are limitations to the results. Failure data 
are commercially sensitive; consequently, a limited 
amount is publicly available. More data, and finer 
grained data would allow better estimates of the 
parameters of the failure processes. Similarly, the 
modelling could be improved by further 

subdivision of the failures beyond the three broad 
classes of generator, gearbox, and blades. This 
would allow improved allocation of costs beyond 
the averages used in this paper. Developing 
a comprehensive public database for reliability, 
availability, and maintainability is a significant 
challenge, but could bring far great reliability to 
planning and risk analysis in this area, encouraging 
investment.

Highlights

● Financial risk metrics of VaR and CVaR are adopted to 
quantify risks from mechanical failure.

● VaR and CVaR are applied to measure the relationship 
between financial risk and wind farm size.

● Wind farms with small numbers of turbines carry signifi
cant risk relative to investment from mechanical failures.

● Failure processes are modelled directly from annual data 
rather than lifetime averages.
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