

Compliance Bonds for incentivising Circular Wind Blade Processing

Kevin Campbell

Bloomberg: Wind Turbine Blades Can't Be Recycled, So They're Piling Up in Landfills (February 2020)

Orr, Isaac. CE Think Tank Newswire; Miami [Miami]. 13 Feb 2020.

"Wind industry calls for Europe-wide ban on landfilling turbine blades" (16th June 2021)

"Today WindEurope called for a Europe-wide landfill ban on decommissioned wind turbine blades by 2025. Europe's wind industry actively commits to re-use, recycle, or recover 100% of decommissioned blades. This comes after several industry-leading companies announced ambitious plans for blade recycling and recovery. A landfill ban would further accelerate the development of sustainable recycling technologies for composite materials".

• Hayes, E. (2021) 'WindEurope calls for ban on landfilling turbine blades', Project Finance [Preprint], (Journal, Electronic). Available at: https://go.exlibris.link/7Wy8ws4W.

Incentivizing Short Loop Circular Solutions

Blade Bridge Midleton-Youghal Greenway

Source: https://www.ucc.ie/en/sefs/news/2022/buildingbridges-with-recycled-wind-turbine-blades.html

Waikado Playground Rotterdam

Source: https://re-use.eu/blade-made/

Short Loop Processes to Minimize Systemic Leakage

Source: https://www.epa.ie/ourservices/monitoring--assessment/waste/nationalwaste-statistics/weee/

More of the materials and energy used in the manufacturing stage are lost as circular processing loops become longer. The energy and materials used to produce products are often undervalued at their end-of-life stage. How can financial incentives help to increase the value of these products and minimize entropy in the system?

Wind Blade Circular Decommissioning

- Various Proposed Processes to Recycle Blade Materials.
 - Solvolysis Solvent breaks chemical bonds of component materials.
 - Pyrolysis Temperature decomposition of component materials.
- Shorter Loop Solutions such as Re-Wind BladeBridge (Remanufacture).
- Landfilling remains a cheap/simple option at decommissioning.
- Innovations in shorter loop circular options to be incentivized.
- Relatively low value materials in conventional glass fibre composite.

Regulation and the Problem of Non-Compliance

- Evidence from the U.S. shows that within mineral extraction sectors, operators often act with negligible moral compulsion.
- Tend towards amoral profit maximization once the decommissioning phase approaches (Dana & Wiseman, 2014).
- Statistics from the U.S. estimate the existence of 190,000 abandoned underground petroleum tanks, 57,000 "orphan" unplugged oil or gas wells, and 557,000 abandoned mine sites (Dana & Wiseman, 2014).
- Longer lifespan of project, more time to find and exploit loopholes in regulations.

Bonding Applications for Environmental Protection

- Used to increase adherence to environmental regulations in highly polluting industries such as coal and oil extraction (Harmon, 2017).
- Used in environmentally sensitive areas to ensure that changes to the environment from business activities such as structural developments, are fully decommissioned and restored to an acceptable standard (Greiner et al, 2000).
- Research conducted into compliance bonding in systems with exceptionally large time scales such as carbon capture and sequestration (Gerard and Wilson, 2009).

Surface Mining Control and Reclamation Act (SMCRA)

- Comprehensive bonding system in operation on a state level. The value of outstanding coal mine surety bonds was estimated at \$7.8bn in 2018 (Government Accountability Office, 2018).
- A further federal system was proposed in the U.S. in response to the failures evident in the system of self-bonding. Self-bonding relies on collateral rather than bonds to ensure a firm's decommissioning responsibilities are fully financed. These commitments are frequently circumvented by business operators declaring bankruptcy before their stated financial obligations can be enforced or environmental damages addressed. (Harmon, 2017).

Increasing Circular Asset Value

- My research explores Bonding of Assets rather than Operator Firms
- Asset Linked Bond increases circular value of asset, incentivises efficient and compliant processing at end-of-life.
- Market drives innovation to access bond refunds, develop technology, knowledge and skills.
- Profit Motive to meet regulatory standards, influence regulation by innovating new circular solutions (e.g. manufacturing design for circularity).
- Assets traceable, measurable, valuable. Materials and assets returned to use, reduce escape from circular loop.

Potential Benefits of Asset linked Bonds

Avoids focus on worst case avoidance e.g. collection motive to avoid landfill.

Can transfer from manufacturer to operator to processing specialists

ŵ

Closes loopholes (bankruptcy, discount related procrastination).

Protects value in asset, promotes efficiency and technical innovation.

Reduces financial inefficiency and wasteful spending of funds.

Bond Price should reflect NPV of future cost of circular processing.

Long expected useful life (e.g. 25yrs) creates discounting challenges.

Discounting and Bond Pricing

Pricing variables include future processing innovations, currency value, inflation, changes in manufacturing methods and inputs.

Simple discounting method to base rates on treasury bonds of similar length to asset useable life eg 25yr T-Bonds for wind blades.

Reinvest Compliance Bonds in government debt instruments

Issuing Institution

Minimize Default Risk, long term financial and political stability.

Sufficient resources to administer bonding system, skills, knowledge, finances, oversight.

Maximize Economies of scale, avoid duplication of effort, centralized system eg. EU level.

Investment in bonding system to avoid negative effect of long-term administration costs on bond values.

Table: Benefits of Refundable Bonds at Various Asset Life-Cycle Stages	
	Accot Lifo_C

Asset Life-Cycle Stage	Bond State	Circular Benefits
Manufacture	Issued to Manufacturer at Price	Assurance of Eventual Asset
	that Covers Circular	Circular Decommissioning
	Decommissioning at End-of-Life.	from Point of Manufacture.
Sale to User	Transfer to Owner, Owner Pays	Circular Processing
	Manufacturer Full Consideration	Responsibilities Transfer with
	(Blade Price + Bond Price).	Asset. Traceability
		Throughout Asset Life.
Lease to End User	Remains with Lessor to Finance	Reduces Risk of Lessor being
	End-of-Life Processing.	Unable/Unwilling to Cover
		Processing Costs.
Premature Failure	Early Redemption on Processing	Advantage over Fixed Dated
	Completion	Bonds, Incentive to Process
	Completion.	in Timely Manner.
		Overcomes Unexpected
		Cost/Cashflow Issues.
Life Extended	Apply for Extension on	Data Available on Life
	Redemption Date Limit.	Extension, Funds Remain
		Available for Eventual
		Decommissioning.
End-of-Life	Redeemed on Completion of	Linked Asset has Available
	Processing to Satisfaction of	Funds to Finance Circular
	Environmental Regulator.	Processing.
Owner Insolvency	Linked to Asset, Ringfenced	Funds Redeemable on
	Funds.	Completion of Asset
		Processing or Bond Remains
		Linked to Asset.

Political and Industrial Acceptance

EU Wind Generation Industry Stated Support of Circular Processing

Bond assures regulatory compliance and financial prudence.

Where provision required in accounts for decommissioning costs, potential to use bond against provision.

Asset owner maintains ownership of bond, arguably less onerous than taxation.

Conclusion

Incentivize shorter loop processes to minimize system leakage

Asset Bonding can increase the circular value of end-of-life assets

Bonding reduces likelihood of operators using loopholes to avoid meeting regulatory standards

Bond Pricing and value are key components in ensuring system is fit for purpose

Multiple benefits to gain political and industry buy-in

References

Agency, E.P. (no date) *WEEE*. Available at: <u>https://www.epa.ie/our-services/monitoring--assessment/waste/national-waste-statistics/weee/</u> (Accessed: 29 August 2023).

Building Bridges with Recycled Wind-Turbine Blades (no date) University College Cork. Available at: <u>https://www.ucc.ie/en/sefs/news/2022/building-bridges-with-recycled-wind-turbine-blades.html</u> (Accessed: 29 August 2023).

Gerard, D. and Wilson, E.J. (2009) 'Environmental bonds and the challenge of long-term carbon sequestration', *Journal of Environmental Management*, 90(2), pp. 1097–1105. Available at: <u>https://doi.org/10.1016/j.jenvman.2008.04.005</u>.

'GOVERNMENT ACCOUNTABILITY OFFICE : REPORT: COAL MINE RECLAMATION: FEDERAL, STATE AGENCIES FACE CHALLENGES IN MANAGING BILLIONS IN FINANCIAL ASSURANCES' (2018) US Fed News Service, Including US State News [Preprint], (Generic). Available at: https://go.exlibris.link/WGCSQY7n.

Greiner, R. *et al.* (2000) 'Incentive instruments for the sustainable use of marine resources', *Ocean & Coastal Management*, 43(1), pp. 29–50. Available at: <u>https://doi.org/10.1016/S0964-5691(99)00067-8</u>.

Guzzo, D. (no date) 'Blade Made | RE-USE.EU'. Available at: <u>https://re-use.eu/blade-made/</u> (Accessed: 29 August 2023).

Harmon, S. (2017) 'Empty Promises? The Demise of Self-Bonding for Coal Mining Reclamation', *Environmental claims journal*, 29(3), pp. 208–221. Available at: <u>https://doi.org/10.1080/10406026.2017.1345524</u>.

Hayes, E. (2021) 'WindEurope calls for ban on landfilling turbine blades', *Project Finance* [Preprint], (Journal, Electronic). Available at: <u>https://go.exlibris.link/7Wy8ws4W</u>.

Orr, I. (2020) 'Bloomberg: Wind Turbine Blades Can't Be Recycled, So They're Piling Up in Landfills', *CE Think Tank Newswire* [Preprint], (Generic). Available at: <u>https://go.exlibris.link/5kk0trZZ</u>.

The butterfly diagram: visualising the circular economy (no date). Available at: <u>https://ellenmacarthurfoundation.org/circular-economy-diagram</u> (Accessed: 29 August 2023).

Contact Details

- Kevin Campbell
- <u>102221951@umail.ucc.ie</u>
- <u>linkedin.com/in/kevin-campbell12</u>