

HYDROGEN TECHNICAL STUDY

31/08/2023

Benoît Mayol

Cork

PRESENTATION PLAN

I. The properties of hydrogen

- Physical properties
- Dangers of hydrogen

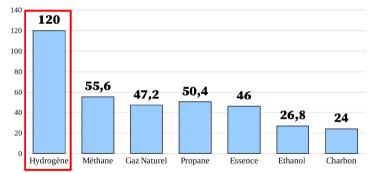
II. Impact on engines

- Engine ranges
- Impact on energy production
- Running costs

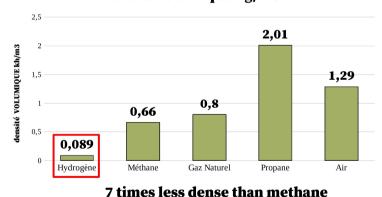
III. Hydrogen storage solutions

- Choice of storage solution
- Steel embrittlement
- Gas storage
- Case studies

ClarkeEnergy*



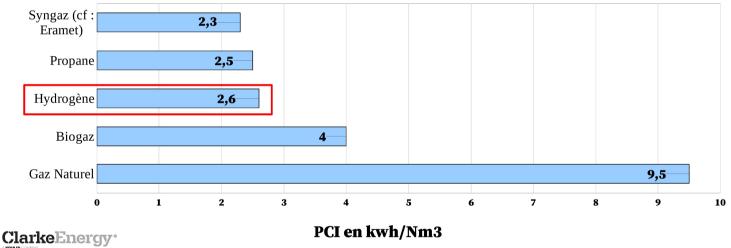
I. THE PROPERTIES OF HYDROGEN


ENERGY MASS DENSITY

Densité massique d'énergie MJ/kg

VOLUME DENSITY

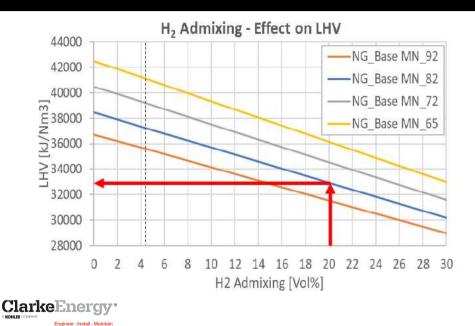
Energy/mass ratio: 2.2 higher than methane



Densité volumique kg/m3

I. The properties of hydrogen

LOWER CALORIFIC VALUE


Comparaison du pouvoir calorifique inférieur

Engineer - Install - Maintain

I. The properties of hydrogen

CHANGES IN CALORIFIC VALUE

This graph shows that natural gas with a MN of 82 and an initial LHV of 10.7 kWh/Nm3 mixed with 20% hydrogen will have an LHV of 9.2 kWh/Nm3.

1. The properties of hydrogen THE DANGERS OF HYDROGEN

- Explosive limit : 4-76 %
- Auto ignition energy : 0,017 mJ

75.0%

4.0

Hydrogen

optimal

condition

15.0%

5.0

Natural Gas

- Can lead to a reduction in oxygen concentration in a closed environmen.
- Odourless and colourless.

% gas-to-air volume ratio

80

60

40

0

29 20 -

- Neither toxic nor corrosive / To date, no carcinogenic effects are known.

10.1%

Propane

7.6%

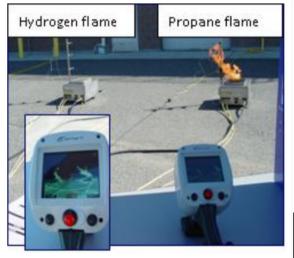
Gasoline

Vapor

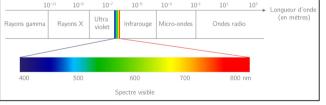
0

Hydrogen

Natural Gas


Propane

Gasoline Vapor

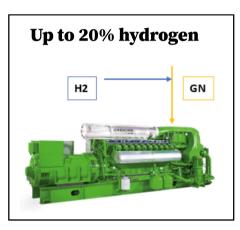


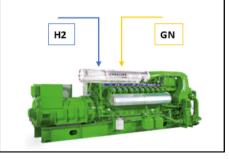
SGH criteria :

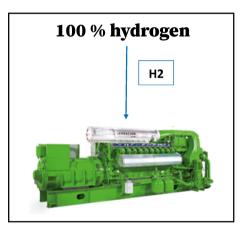
I. The properties of hydrogen THE DANGERS OF HYDROGEN

Hydrogen flames are difficult to see with the naked eye.

N°7

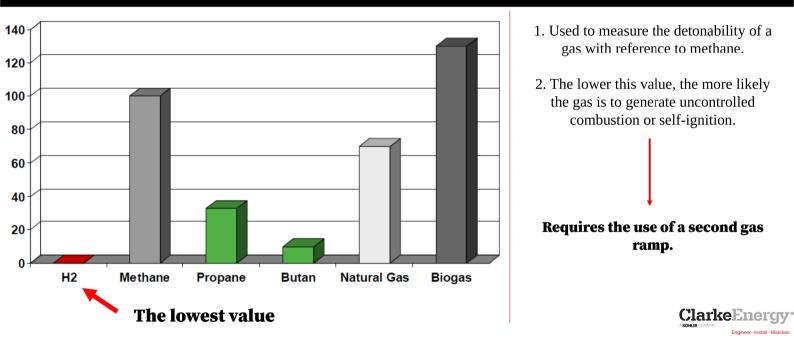

Radiation : between 2700 and 3200 nm


II. ENGINE RANGES

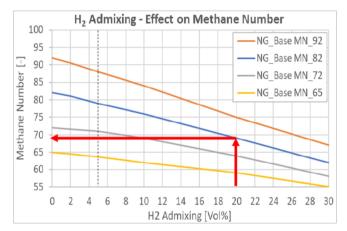

Electrical output range (kWel)	Α	В	С
Generator Output @ 50Hz & NG fuel	H ₂ in pipeline gas	NG/H ₂ engine	Pure H ₂ engine
0 1.000 2.000 3.000 4.000 5.000 [] 10.000	<5%v <20%v ²⁾ optional	0-100 %(vol)	100%
Type 9 J920 FieXtra	\checkmark	25	2025+
Type 6 J612 J616 J620 J624	✓ ✓	60	2025+
Type 4 J412 J416 J420	✓ ✓	100	\checkmark
Type 3 J312 J316 J320	✓ ✓	60	2025+
Type 2 J208 ²⁾ Subject to required modifications for the certification of the fuel gas components – a modification of the maintenance schedule for such components maybe required	✓ ✓	60	2025+

THREE CONFIGURATIONS

Up to 60 or 100% hydrogen and the rest NG



Engineer - Install - Maintain


ClarkeEnergy*

METHANE NUMBER (MN)

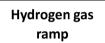
PROPERTIES OF GAS MIXTURES

Methane Number :

Recommandations:

MN must not be < 70

MN variation < 10 / minute


- Above 20% hydrogen, the gas must be fed to the engine via an independent manifold, as it becomes too explosive to pass through the turbocharger

ClarkeEnergy

DIRECT INJECTION INTO CYLINDERS

Source : Jenbacher engine in Hans Werk Natur J416 - C202

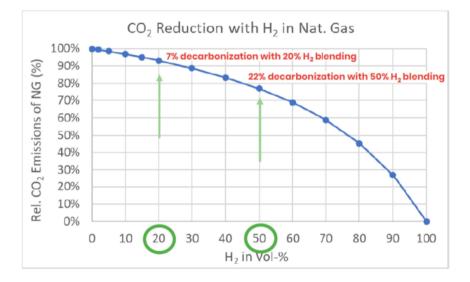
GAS ENGINE COMPARISON

Site	Engine	Combustible	МЕР	Calorific Value	Gas flow	Electric power (best effort)
COGE Kellerman	JMS-420-GS- N.L-BE68		20,17 bar	9,5 kWh/Nm3	379 Nm3/h	1501 kW
CSD Grange 3	JMS-420-GS- LL-B21	Biogas	19 bar	4 kWh/Nm3	844 Nm3/h	1414 kW
TS moteur Hydrogène	JMS-420-GS- S.L-E900	Hydrogen	12 bar	2,6 kWh/Nm3	780 Nm3/h	889 kW

CALCULATION HYPOTHESES

Cost of producing H2 : 4,5 €/kg

Gas purchase costs : 40 €/MWh

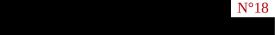

Cost of fonctionnement :

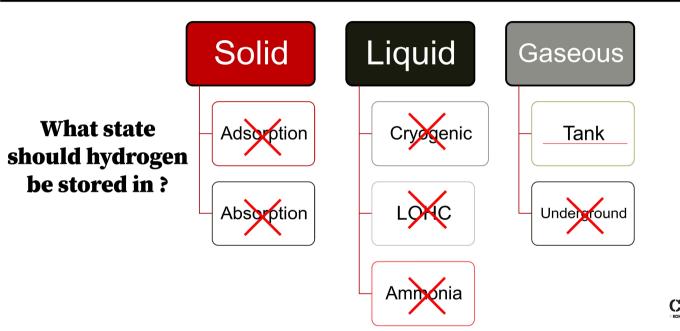
Operating cost doubled for hydrogen.

All engines :

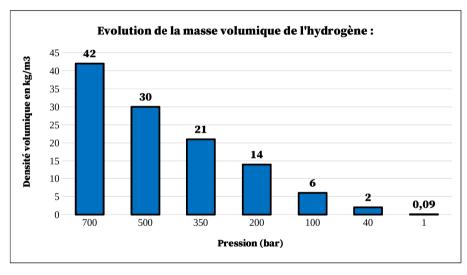
IN SUMMARY

TO ASSESS :


- The energy properties of this gas are inferior to those of natural gas.
- Engines are less powerful than their natural gas equivalents (production costs twice as high).
- Hydrogen does not generate CO2 during combustion (but does generate NOx).
- More dangerous to operate (but the danger is manageable).



HYDROGEN STORAGE


III. HYDROGEN STORAGE SOLUTIONS :

GAS STORAGE

Low volume density ⇒ requires hydrogen compression.

Mechanical compression :

- Choice of materials ⇒ adapted to H2
- Lubrica,ts used \Rightarrow hydrocarbon-free
- Hydrogen quality ⇒ 98,98 %

Centrifugal compressor :

- Unsuitable because the density of hydrogen is too low.

Electrochemical compressor :

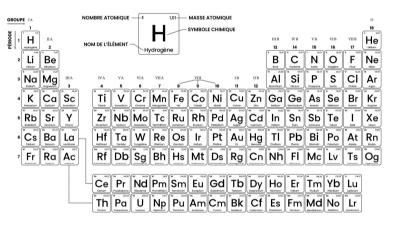
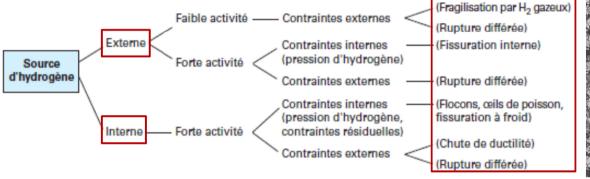
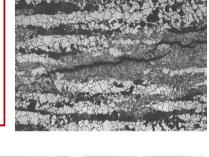
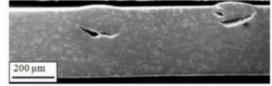

- Low rate of flow.

TABLEAU PÉRIODIQUE DES ÉLÉMENTS



Hydrogen diffusion in steels :

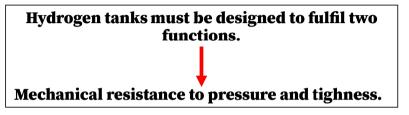

HYDROGEN EMBRITTLEMENT



- \rightarrow WEAKENING OF ATOMIC BONDS.
- \rightarrow FORMATION OF METAL HYDRIDES.

 \rightarrow decrease in ductility.

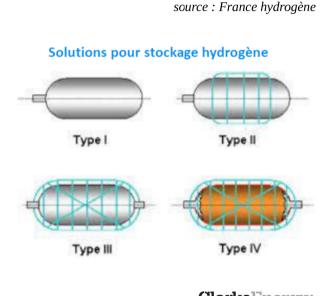
Source : Techniques de l'ingénieur - M175



Austenitic stainless steel 316L :

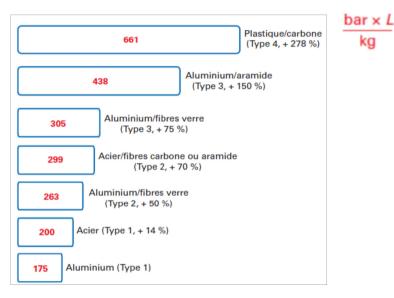
- Higher levels of Chromium and Nickel (to improve the ductility of the steel).
- Minimum 10% nickel according to ASTM (American society for testing and materials).
- Reduce the diffusion coefficient of hydrogen in steels by modifying: the thickness of the hydrogen piping and the grain size of the steel (cm²/s).
- Standard NF EN 11114 summarises the compatibility of hydrogen with materials.
- Standard NF EN 13480-2 specifies three test methods in appendix B to validate or not the choice of a steel.

III. Hydrogen storage solutions : TYPES OF COMPRESSED HYDROGEN TANKS :


Four types of tanks :

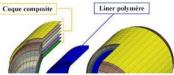
Type I: stainless steel liner.

Type II: stainless steel liner reinforced with composite winding.


Type III: reinforced aluminium liner with composite winding.

Type IV: thermoplastic polymer liner with composite winding.

PERFORMANCE INDEX


source : Techniques de l'ingénieur TRP1108 V1

Type II tank, Fibatech

Type IV tank, Mahytec

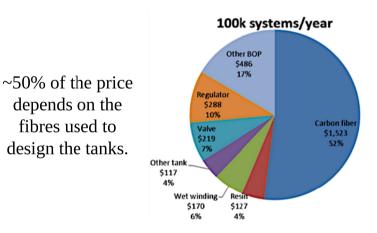
MANUFACTURING COSTS OF COMPOSITE TANKS

Tanks prices :

Type I at 200 bar : 380 – 450 €/kg

Type I at 300 bar : 400 – 500 €/kg

Type II and III of 300 – 500 bar : 500 - 700€/kg


Type IV of 500 – 700 bar : 600 – 1000 €/kg

Consultations returns :

- 60 bottles/type III frame with 390 kg at 350 bar ⇔ €485,000

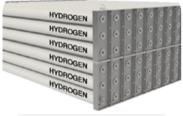
- 106 cylinders/type IV container with

1192 kg at 500 bar ⇔ €1,190,000

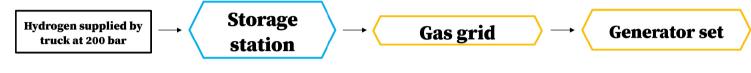
cf : France hydrogène

Engineer - Install - Maintain

ClarkeEnercy



Four configurations :


Bottles 200 bar Composite Bottles 350 – 700 bar

Tanks 40 – 100 bar Tubes 200 – 350 bar

ClarkeEnergy*

V. La station de stockage

SCHÉMA DE PRINCIPE DE LA STATION DE STOCKAGE

Generator set :

- MN minimum 70
- MN variation < 10 MN / minute
- Variation in hydrogen content < 4% / minute
- Variation in calorific value < 4% / minute
- Temperature < 40°C

Source : TS Chêne des Anglais JMS 420 GS NL B02

Engine data J420				
Maximal flow rate H2	76 Nm3/h			
(20%)	6,8 kg/h			
Nominal flow rate H2	38 Nm3/h			
(10%)	3,4 kg/h			
Minimal flow rate GN (80%)	304 Nm3/h			
Nominal flow rate GN (90%)	342 Nm3/h			
Total flow rate	380 Nm3/h			
Gas ramp pressure	120 - 200 mbar			

THANK YOU FOR YOUR ATTENTION

