### End-of-Life Issues for Onshore Wind Farms Friday 27th May 2022, Cork, Ireland

### Conference Welcome









## Wind Farm End-of-Life Considerations

Speaker:

### Paul Leahy

School of Engineering & Architecture & MaREI Centre, University College Cork

### **Re-Wind Network**

University College Cork, Queens University Belfast, Georgia Tech, Munster Technological University

Presentation at: End-of-Life Issues for Onshore Wind Farms Friday 27th May 2022, Cork, Ireland



Cork, 27.05.2022





## **Presentation Overview**

- Wind Energy in Ireland 1990–2038
- Wind Farm Life Cycle & End-of-life Decisions
- Turbine Blades
- The Re-Wind Project & Blade Repurposing
- Background to BladeBridge
- How Sustainable is Blade Repurposing?



Re-Wind Catalog Modeling and Graphics: Asha McDonald, Chloe Kiernicki, Mehmet Bermek, Zoe Zhang, Alex Poff, Sakshi Kakkad, Emily Lau, Franco Arias, Russell Gentry.

## WIND ENERGY IN IRELAND 1990-2038

## Wind Energy in Ireland

- Wind Energy capacity in Ireland:
  - 153 MW in 2001
  - 5,576 MW in 2020
  - 16,000 MW by 2030

Data: Eirgrid, Climate Action Plan, SONI TES NI Scenario 3

- Wind turbine typical design life is 20-25 years
- Wind turbine decommissioning will accelerate in the next five years





Lower image: decommissioning, energyfacts.eu

# Turbine decommissioning & the mounting blade 'waste' issue

Approximately 2,323 turbines to be decommissioned in Ireland by 2038

Landfill will soon no longer be an option for end-of-life blades in Ireland



Emma Delaney, QUB

Volumes of plastic and composite waste is a global environmental problem Image: Korle Lagoon, Accra, Ghana https://www.abc.net.au/news/2021-08-12/fast-fashion-turning-parts-ghana-intotoxic-landfill/100358702 August 12<sup>th</sup> 2021

### WIND FARM LIFE CYCLE & END-OF-LIFE DECISIONS

# Wind farm end of life decision factors

When does a wind plant reach end of life?

- End of design life
- Expiration of planning permission
- Market reforms
- Expiration of subsidies
- Operating costs: wear, fatigue, failures, outages, repairs
- Obsolescence

### What happens next?

- Decommission
- Repower
- (continue operation)



Altamont Pass, USA. Image: Noah Berger, National Geographic

# Wind farm lifecycle & blade downcycling

downcycling



## **TURBINE BLADES**

## End of life wind turbine blades: a circular economy challenge

- Wind turbine blades are primarily composed of non-biodegradable GFRP composite materials
- Annual global blade waste is expected to reach 40 million tonnes by 2050
- GFRP is a highly-engineered valuable material but its components are of relatively low value!
- Can technically, economically, environmentally & socially feasible repurposing options be found?



## THE RE-WIND PROJECT & BLADE REPURPOSING

### Re-Wind: Driving Innovation in the Re-Use of Decommissioned Wind Turbine Blades

Supported by InvestNI/Department for the Economy (DFE), Grant USI-116; by Science Foundation Ireland, Grant 16/US/3334; and by the U.S. National Science Foundation under grants numbers 1701413 and 1701694, under the project "Re-Wind". Re-Wind, 2020.





### Wind Thrust



### Mechanical Thrust

Design Thrust

Geographical Information Science (GIS) Thrust

Re-Wind Project (2017-2021) Partners: UCC, QUB, Georgia Tech, City University of New York

## **Re-Wind Circular Economy thrust**

- The Re-Wind UCC team is focused on:
  - Environmental sustainability
  - Social acceptability
  - Sustainable business models
- for second (& third) life applications for decommissioned wind turbine blades



 Complex, multifactorial problem...

## Complex challenges require transdisciplinary approaches

- Re-Wind adopts a transdisciplinary approach to determine environmentally, socially and economically sustainable repurposing options for blades
- Academic Investigators (UCC)
  - Dr. Paul Leahy, Wind Energy Engineering,
  - Dr. Niall Dunphy, Cleaner Production Promotion Unit
  - Dr. Ger Mullally, Sociology
- Disciplines: Architecture, Structural Engineering, Sociology, Energy Engineering, Business Model Discovery, Geographical Information Science



#### Postdocs & PhDs

Dr Peter Deeney (Finance), Angela Nagle (Environmental), Fergal Gough (Social/Community), Heloisa Lemmertz (Circular Business Models)

Wind Farm End-of-Life Issues : WindValue

27.05.2022

## Blade Repurposing: Methodology

More than 50 blade repurposing concepts identified initially Design Office exercise (Winter 2019, Belfast)

The success of reuse cases depends on technical feasibility, location & social, environmental and economic sustainability

A transdisciplinary approach has developed tools to assess all of these:

- All-Ireland blade geodatabase
- 3-D LiDAR scanning
- Blade geometry reconstruction software
- Structural analysis & testing methods
- Community engagement methodology
- Lifecycle analysis (LCA)
- Robust set of internationally-deployable success indicators : environmental, social and economic







## Blade repurposing use cases



## BACKGROUND TO BLADEBRIDGE

## Youghal-Midleton Greenway, Cork



(Emma Delaney, Re-Wind QUB)

- 23 km cycleway under development by Cork County Council
- Funded by the Project Ireland 2040 initiative.
- Expected completion 2023, sections will open earlier
- Route surveyed for potential blade bridge crossings, April 2020

### QUB LiDAR scanning of Nordex N29 Blades at Everun Ltd, Belfast





## HOW SUSTAINABLE IS BLADE REPURPOSING?

### BladeBridge LCA Boundary Setting & Assumptions

Functional Unit: Disposition of 4500 kg blade waste over 60 years (Cradle to Grave)

- Blades transported Belfast to Cork
- Lower 2/3 blade replaces steel bridge girders made with partially recycled material
- Top 1/3 blade sent to landfill (conservative assumption: may be repurposed)
- Blades coated in epoxy protective layer
- End of Life Plan: Co-processing of GFRP girders, recycling of hardware

Wooden decking material, abutments, and maintenance schedule assumed equal to bridge made with steel girders

Presented by Angie Nagle, ReComp 25th November 2020

### Blade bridge : initial environmental assessment

- Blade bridge **environmentally** preferable to alternative end-of-life treatments: co-processing or landfill (baseline, not shown)
- Impacts calculated using Life Cycle Analysis (LCA) by Angie Nagle



Method: IMPACT 2002+ V2.15 / IMPACT 2002+ / Normalisation Comparing 1 p 'Bridge Superstructure Only' with 1 p 'Co-Process (4.5 tonnes)';

### Value perception in Wind Farm End-of-Life



## Integrated environmental, social and economic assessments

- Multicriteria decision analysis (Deeney et al., 2021) based on custom UN SDG indicators, LCA outputs, Delphi panels of experts
- Future repurposing must be sustainable in terms of social, environmental and economic aspects
- Inclusive configuration of stakeholder in which different needs and interests are reflected
- Importance of engaging communities where blades are located and likely to be reused or recycled
- There is a possible role for so-called social business models
- Repurposing scores well on integrated metrics compared to "conventional" endof-life disposal



■ Landfill ■ Incineration ■ Co-Processing ■ Furniture Making ■ Bridge Fabrication

End-of-Life alternatives for wind turbine blades: Sustainability Indices based on the UN sustainable development goals

Peter Deeney <sup>a,b,g,\*</sup>, Angela J. Nagle <sup>a,b</sup>, Fergal Gough <sup>a,c</sup>, Heloisa Lemmertz <sup>a,c</sup>, Emma L. Delaney <sup>d</sup>, Jennifer M. McKinley <sup>d</sup>, Conor Graham <sup>d</sup>, Paul G. Leahy <sup>a,b,g</sup>, Niall P. Dunphy <sup>a,b,e,g</sup>, Gerard Mullally <sup>a,c,e,f,g</sup>

Resources, Conservation & Recycling 171 (2021) 105642

### Repurposing Social Acceptability Poll







• Poll link:

https://forms.microsoft.com/Pages/ResponsePag e.aspx?id=pVz-Rm-GQk6S6e2HhiRVRQHAarlql3pOi9vvmlANsXZUMk o1WlgwUVpKQU44T0pCTzJYRVo5NFc2Ui4u



### Re-Wind : reflections and next steps

- Re-Wind integrated social, environmental and business sustainability analyses
- The blade bridge was beyond the original plan!
- The bridge was invaluable to inform the social, economic & environmental analyses
- Was the project truly transdisciplinary?





Graphic: thearcticInstitute.org

#### Next steps

- End-of-life decision support: allow wind farm owners, decommissioners and waste managers to make optimal decisions
- WindValue & WindLEDeRR projects
- Blade Repurposing Startup

### Wind Farm End-of-Life : Conclusions

- We can address several societal challenges through greenway blade bridges: circular economy/ resource reuse, decarbonising transport, healthy lifestyles, sustainable rural development
- Technical feasibility of repurposing blades as infrastructure has been demonstrated
- Detailed life cycle analysis shows environmental benefits:
  - Repurposing blades as bridges is environmentally superior to cement kiln co-processing or landfilling the blades



## Thank you!

Acknowledgements to Re-Wind research team at University College Cork, Queens University Belfast, and Georgia Tech and Kieran Ruane of Cork Institute of Technology

Funders: SFI; NSF; DfE; & Steering Group

Bridge Design: Zoe Zhang, Georgia Tech GIS: Emma Delaney, Queens University Belfast



www.re-wind.info paul.leahy@ucc.ie twitter.com/ReWindUCC Linkedin: Re-Wind Network